library("quanteda")
## Package version: 4.1.0
## Unicode version: 15.1
## ICU version: 74.2
## Parallel computing: 4 of 4 threads used.
## See https://quanteda.io for tutorials and examples.
library("quanteda.textmodels")
quanteda.textmodels implements fast methods for fitting and predicting Naive Bayes textmodels built especially for sparse document-feature matrices from textual data. It implements two models: multinomial and Bernoulli. (See Manning, Raghavan, and Schütze 2008, Chapter 13.)
Here, we compare performance for the two models, and then to the performance from two other packages for fitting these models.
For these tests, we will choose the dataset of 50,000 movie reviews from Maas et. al. (2011). We will use their partition into test and training sets for training and fitting our models.
# large movie review database of 50,000 movie reviews
load(url("https://quanteda.org/data/data_corpus_LMRD.rda"))
dfmat <- tokens(data_corpus_LMRD) %>%
dfm()
dfmat_train <- dfm_subset(dfmat, set == "train")
dfmat_test <- dfm_subset(dfmat, set == "test")
Comparing the performance of fitting the model:
library("microbenchmark")
microbenchmark(
multi = textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "multinomial"),
bern = textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "Bernoulli"),
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## multi 79.58887 79.82042 84.10156 80.20437 89.64562 97.68959 20
## bern 86.56513 99.88759 114.79154 100.36895 103.52609 254.16360 20
And for prediction:
microbenchmark(
multi = predict(textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "multinomial"),
newdata = dfmat_test),
bern = predict(textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "Bernoulli"),
newdata = dfmat_test),
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## multi 89.62755 89.98453 102.0828 90.20028 103.1618 249.2568 20
## bern 129.03474 130.86109 135.5513 131.95669 143.3328 145.7439 20
Now let’s see how textmodel_nb()
compares to equivalent
functions from other packages. Multinomial:
library("fastNaiveBayes")
library("naivebayes")
## naivebayes 1.0.0 loaded
## For more information please visit:
## https://majkamichal.github.io/naivebayes/
microbenchmark(
textmodels = {
tmod <- textmodel_nb(dfmat_train, dfmat_train$polarity, smooth = 1, distribution = "multinomial")
pred <- predict(tmod, newdata = dfmat_test)
},
fastNaiveBayes = {
tmod <- fnb.multinomial(as(dfmat_train, "dgCMatrix"), y = dfmat_train$polarity, laplace = 1, sparse = TRUE)
pred <- predict(tmod, newdata = as(dfmat_test, "dgCMatrix"))
},
naivebayes = {
tmod = multinomial_naive_bayes(as(dfmat_train, "dgCMatrix"), dfmat_train$polarity, laplace = 1)
pred <- predict(tmod, newdata = as(dfmat_test, "dgCMatrix"))
},
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## textmodels 90.14678 90.79273 104.6843 93.53022 104.9313 258.9628 20
## fastNaiveBayes 132.93599 143.01086 146.6801 144.79854 151.5748 159.6089 20
## naivebayes 104.04558 107.43844 116.5664 118.10041 121.1103 143.5285 20
And Bernoulli. Note here that while we are supplying the Boolean
matrix to textmodel_nb()
, this re-weighting from the count
matrix would have been performed automatically within the function had
we not done so in advance - it’s done here just for comparison.
dfmat_train_bern <- dfm_weight(dfmat_train, scheme = "boolean")
dfmat_test_bern <- dfm_weight(dfmat_test, scheme = "boolean")
microbenchmark(
textmodel_nb = {
tmod <- textmodel_nb(dfmat_train_bern, dfmat_train$polarity, smooth = 1, distribution = "Bernoulli")
pred <- predict(tmod, newdata = dfmat_test)
},
fastNaiveBayes = {
tmod <- fnb.bernoulli(as(dfmat_train_bern, "dgCMatrix"), y = dfmat_train$polarity, laplace = 1, sparse = TRUE)
pred <- predict(tmod, newdata = as(dfmat_test_bern, "dgCMatrix"))
},
naivebayes = {
tmod = bernoulli_naive_bayes(as(dfmat_train_bern, "dgCMatrix"), dfmat_train$polarity, laplace = 1)
pred <- predict(tmod, newdata = as(dfmat_test_bern, "dgCMatrix"))
},
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## textmodel_nb 119.2177 132.4640 144.4594 135.1591 148.1621 283.4056 20
## fastNaiveBayes 141.9869 157.6556 166.4567 168.7516 175.2655 185.5722 20
## naivebayes 114.3093 126.2507 155.6713 131.1527 145.7930 304.5695 20
Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts (2011). “Learning Word Vectors for Sentiment Analysis”. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).
Majka M (2020). naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R. R package version 0.9.7, <URL: https://CRAN.R-project.org/package=naivebayes>. Date: 2020-03-08.
Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information Retrieval. Cambridge University Press.
Skogholt, Martin (2020). fastNaiveBayes: Extremely Fast Implementation of a Naive Bayes Classifier. R package version 2.2.1. https://github.com/mskogholt/fastNaiveBayes. Date: 2020-05-04.